
C Y P R I A N L E W A N D O W S K I

E X P O R T V O X E L D ATA
M AT L A B PA C K A G E M A N U A L

Copyright © 2013 Cyprian Lewandowski

LATEX template provided by tufte-latex.googlecode.com

mailto:cyprian.lewandowski@gmail.com
http://tufte-latex.googlecode.com

Contents

Introduction 5

How does the package work? 5

Manual layout 7

Input 9

Logical 9

Label matrix 10

Voxel list 10

Mesh Extraction 11

Convex hull method 11

Isosurface method 12

Geometric method 12

Mesh Modification 13

Resampling 13

Smoothing 14

Options 15

pov and stl - output specific file format 15

mesh_name - change mesh name 15

output_dir - change output folder 16

4

label_matrix - input label matrix 16

object_ids - export only chosen objects 16

shift_origin - translate object’s coordinate system 17

img_dim - provide dimensions of exported object 17

img_shift - translate object’s mesh by a given vector 18

Exporting voxel data to PovRay 19

Structure of PovRay .inc files 19

Creating PovRay scene 19

Colouring objects using a scalar array as a key 21

Exporting voxel data to Blender 23

Format of STL files 23

Exporting voxel data as a single object 23

Exporting voxel data as individual coloured objects 24

Rendering stereoscopic images 26

Further examples 29

Conclusion 31

Introduction

The Export Voxel Data package was written as an interface
between voxel data stored as a matrix in Matlab

1 and triangulated 1 Information about the most recent
version is available at: http://www.
mathworks.com/products/matlab/.

mesh format used in 3D file formats such as STL2 and/or software

2 An excellent description is provided
by Wikipedia: http://en.wikipedia.
org/wiki/STL_(file_format).

such as Blender
3 or PovRay

4.

3 Blender is a free and open-source 3D
computer graphics software: http:
//www.blender.org.

4 PovRay is a free ray tracing software:
http://www.povray.org.

Main script dealing with user interaction is ExportVoxelData.m.
It contains an associated help document explaining structure of in-
put and output. Figure 1 shows included help file, which can be
obtained by entering help ExportVoxelData command in Matlab.

Figure 1: Help document is included in
the package.

How does the package work?

Process of exporting voxel data can be divided into several stages as
illustrated in figure 2. This separation in distinct stages provides the
program with modular structure and hence individual elements can
be extended or used within body of other scripts.

http://www.mathworks.com/products/matlab/
http://www.mathworks.com/products/matlab/
http://en.wikipedia.org/wiki/STL_(file_format)
http://en.wikipedia.org/wiki/STL_(file_format)
http://www.blender.org
http://www.blender.org
http://www.povray.org

6

Figure 2: Workflow of the Export Voxel
Data package. Note: Arrows between
"Input Processing" and "Mesh Extraction"
stages indicate what format is used in each
of these methods.

Data to be exported is inputed to ExportVoxelData.m with op-
tional arguments specifying, for example, output format, name, mesh
extraction method etc. Following data input, the package performs
necessary conversions of the data, so that desired mesh generation
method can be used. After export data has been prepared mesh is
extracted and enters the Mesh Modification part of the package.
At this stage mesh size can be reduced (resampling), smoothed out or
translated to another coordinate system. Such prepared mesh is then
exported to formats of choice and saved to HDD.

Exported mesh files are not the only information that the package
can output. There are additional scripts ExportObjectsBlender.m

and ExportObjectsPovRay.m, which can generate colouring in-
formation for exported objects using a scalar array as a key. An
example would be ordering of particles by some physical prop-
erty, such as number of contacts or packing fraction. The PovRay

script can also be used to create a simple scene, which can be ren-
dered out of a box. The Blender script outputs a configuration file,
which can be used together with a custom written Blender add-on
io_mesh_stl_batch5 to import exported objects to Blender with

5 All Blender add-ons to be mentioned
in the manual are located in Blender

Addons folder within the main package
directory.

7

specified colour and transparency.
Different options and parameters will be discussed in the manual,

hence it is worth pointing out the general structure and nomencla-
ture used. Order of options does not matter, but they need to use
following command pattern:

1 ExportVoxelData(input_data, 'option_name', option_value, ...
'option_name_2', option_value_2);

For the remainder of the manual, name of an option will be re-
ferred to as option_name and its value as option_value.

Manual layout

In this document most of package features will be presented with
a Matlab example and an accompanying output. Code used for
generation of examples will be included within body of this docu-
ment, but there is also an associated Manual_Examples.m script, which
can be opened with Matlab and used alongside the manual. Most
of images used to illustrate output are made with Pleasant3D6 6 Pleasant3D software is a small STL

editing application: http://www.
pleasantsoftware.com/developer/

pleasant3d/.

application, which, among other things, allows for quick viewing of
STL files.

The ExportVoxelData package was written as a by-product of
my main Matlab project, which was reconstruction of spaghetti
packing, however for all of manual examples, input data can be
generated in Matlab with following code (also present in the
Manual_Examples script):

1 %% Create data
2 % This cell creates data that is used throughout the ...

Manual_Data script
3

4 % Make coordinate system
5 [X,Y,Z] = meshgrid(−249:250);
6

7 % Nonintersecting objects
8 % Create empty matrix
9 BW_NI = false(500,500,500); % Black and White image (logical)

10

11 % Add Sphere
12 BW_NI((X−50).^2+(Y−50).^2+(Z+30).^2 ≤ 400) = true;
13

14 % Add Ellipsoid
15 BW_NI((X/20).^2+(Y/50).^2+(Z/100).^2 ≤ 1) = true;
16

17 % Intersecting Objects
18 % Create empty matrix
19 BW_I = false(500,500,500);
20 LM_I = zeros(500,500,500, 'uint8'); % Label matrix

http://www.pleasantsoftware.com/developer/pleasant3d/
http://www.pleasantsoftware.com/developer/pleasant3d/
http://www.pleasantsoftware.com/developer/pleasant3d/

8

21

22 % Add Sphere
23 BW_I((X−50).^2+(Y−50).^2+(Z+30).^2 ≤ 10000) = true;
24 LM_I((X−50).^2+(Y−50).^2+(Z+30).^2 ≤ 10000) = 1;
25

26 % Add Ellipsoid
27 BW_I((X/20).^2+(Y/50).^2+(Z/100).^2 ≤ 1) = true;
28 LM_I((X/20).^2+(Y/50).^2+(Z/100).^2 ≤ 1) = 2;
29

30 % Determine voxel list through finding region properties
31 RP_I = regionprops(LM_I, 'PixelList');
32

33 clear X Y Z

Input

Currently three input formats are supported: logical, label matrix
and voxel list. If necessary the package can be extended to support
additional formats, but from experience with my data, voxel list and
label matrix are sufficient (and preferred) formats for performing
most of data analysis.

Logical

A logical matrix is a matrix where each entry is either true or false.7 7 I prefer to think of it as a scalar field
with a limited domain, which can take
only two values.

This visually corresponds to a black and white image. Using the data
generated for the purpose of the manual (as described in the Manual
Layout section), let’s first use the image of two nonintersecting ob-
jects, that is of a sphere and an ellipsoid. Output shown in figure 3

can be generated with code:

1 %% Input − Logical − Example 1
2

3 ExportVoxelData(BW_NI);

Figure 3: A logical image of noninter-
secting sphere and ellipsoid.

Line 3 is the simplest execution of the ExportVoxelData script.
It automatically detects type, performs extraction of the mesh

using isosurface method and does one iteration of surface smooth-
ing. By default it outputs to directory of script execution two files
matlab_mesh.stl and matlab_mesh.inc. The first one contains mesh
in STL binary format and the second one contains mesh28 format

8 More information available at: http:
//www.povray.org/documentation/

view/3.6.1/68/.
used for mesh description in PovRay. Both formats are discussed in
chapters "Exporting voxel data to Blender " and "Exporting voxel
data to PovRay " respectively.

That’s it, no more scripting or coding is required. Exported voxel
data is ready to be used.

It is worth mentioning that if the logical image contains two ob-
jects, which are not separated, i.e. two objects are intersecting or just
touching, then the ExportVoxelData package will detect them as a
single object.

http://www.povray.org/documentation/view/3.6.1/68/
http://www.povray.org/documentation/view/3.6.1/68/
http://www.povray.org/documentation/view/3.6.1/68/

10

Consider executing following code:

1 %% Input − Logical − Example 2
2

3 ExportVoxelData(BW_I);

Figure 4: STL file of two intersecting
objects.

As it can be seen in figure 4, this produces no changes that can be
observed, but when one would like to export colour information
about those two objects, it would be impossible to do so as two ob-
jects cannot be distinguished in the logical input format.

Label matrix

A label matrix is a matrix of identical dimensions to the logical im-
age, but regions corresponding to different objects are labelled with
consecutive integers rather than just simply being labelled as true.
For well separated objects such as the one in Example 1 this produces
no visual difference. For intersecting objects as generated by code
below, the output is again visually identical, but during the exporting
process, two objects are being exported rather than just one. This has
further application when one considers option object_ids.

1 %% Input − Label Matrix − Example 3
2

3 ExportVoxelData(LM_I);

Figure 5: Exported image of two inter-
secting objects from Label Matrix. Note:
No visual difference is present as compared
to Logical input data.

Voxel list

More precisely it is a structure similar to the output of Matlab’s
regionprops9 function. Each entry of the structure contains a field,

9 Information about the function:
http://www.mathworks.com/help/

images/ref/regionprops.html.

which is an array of voxels that constitute the object. An example
of such structure was generated in the Manual layout section under
variable name RP. Again, using default setting as in the code below,
no visual difference can be observed, which is illustrated in figure 6.

1 %% Input − Voxel List − Example 4
2

3 ExportVoxelData(RP_I);

Figure 6: Output from voxel list used as
input data.

So far it might seem that there is no significant advantage of using
one input format over another, however as more options are being
used from the package or if just one format is available, then support
for different types of input becomes handy.

http://www.mathworks.com/help/images/ref/regionprops.html
http://www.mathworks.com/help/images/ref/regionprops.html

Mesh Extraction

Convex hull method

This is the most basic method for mesh extraction implemented in
the package. It is performed using Matlab’s function convhull10, 10 Information about the function:

http://www.mathworks.com/help/

matlab/ref/convhull.html.
thus it is very computationally efficient. For a given input data it
finds exterior voxels of each region, connects them and uses such
created surface for mesh extraction.

Consider the two nonintersecting objects in logical voxel data
format - the BW_NI matrix. Command used to export them using
Convex hull method is:

Figure 7: Convex hull exported
objects with no intrinsic surface con-
cavity visually appear identical to the
isosurface method.

1 %% Mesh Extraction − Convexhull − Example 5
2

3 ExportVoxelData(BW_NI, 'method', 'convhull');

Visually the two objects (shown in figure 7) look very similar to
Example 1, however surface of objects appears more triangulated.

It is also worth pointing out differences in file size. For the de-
fault method - isosurface, STL binary file is (in this case) 5.8 MB as
compared to the convex hull file that is 223 kB.

On the other hand when an object being exported possesses some
surface concavity, then convex hull method produces undesirable
results, as illustrated in figure 8 obtained with Matlab’s code:

1 %% Mesh Extraction − Convexhull − Example 6
2

3 ExportVoxelData(BW_I, 'method', 'convhull');

Figure 8: Intersecting objects produce a
shape with surface concavity. Note: In
this case if the two objects were inputed as
label matrix or voxel list such effect would
not have been obtained.

In such cases one has to fall back to using other mesh extraction
methods, which although produce larger output files, can accommo-
date such surface concavity as shown in figure 9.

http://www.mathworks.com/help/matlab/ref/convhull.html
http://www.mathworks.com/help/matlab/ref/convhull.html

12

Isosurface method

This is the default mesh extraction method. The function that per-
forms determination of object’s surface is again a Matlab’s function
isosurface11.

11 Information about the function:
http://www.mathworks.com/help/

matlab/ref/isosurface.html.

If necessary one can be explicit in the method he uses by executing
the ExportVoxelData script in following form:

Figure 9: Object with surface concavity
is correctly exported using the isosur-
face mesh extraction method.

1 %% Mesh Extraction − Isosurface − Example 7
2

3 ExportVoxelData(BW_I, 'method', 'isosurface');

Geometric method

The implemented geometric method is based on a code developed
by Aitkenhead A. H.12 and adapted to work with the ExportVoxel- 12 More information about the pack-

age: http://www.mathworks.com/
matlabcentral/fileexchange/27733-

converting-a-3d-logical-array-

into-an-stl-surface-mesh.

Data package.
In principle this method never has to be used, as essentially it cre-

ates the same output to the isosurface method both visually and
file size, while being much slower. This is because the voxelisation
stage is implemented within interpreted Matlab code rather than
as a fast, precompiled Matlab’s function that isosurface is. Geo-
metric method was included in the package out of academic interest
and can be used as shown in the code extract below:

1 %% Mesh Extraction − Geometric − Example 8
2

3 ExportVoxelData(BW_I, 'method', 'geometric');

Figure 10: STL output of geometric

mesh extraction method.

Figure 10 illustrates this example’s output. If one zooms to view
the surface with more detail and compares it with figure 9, it can be
seen that output of geometric method contains a much finer mesh,
but the overall shape is not much different.

http://www.mathworks.com/help/matlab/ref/isosurface.html
http://www.mathworks.com/help/matlab/ref/isosurface.html
http://www.mathworks.com/matlabcentral/fileexchange/27733-converting-a-3d-logical-array-into-an-stl-surface-mesh
http://www.mathworks.com/matlabcentral/fileexchange/27733-converting-a-3d-logical-array-into-an-stl-surface-mesh
http://www.mathworks.com/matlabcentral/fileexchange/27733-converting-a-3d-logical-array-into-an-stl-surface-mesh
http://www.mathworks.com/matlabcentral/fileexchange/27733-converting-a-3d-logical-array-into-an-stl-surface-mesh

Mesh Modification

Extracted mesh can be further modified to improve quality of the
output. The two possible mesh modifications, which produce visual
changes are: resampling and smoothing. Other parameters provided
by the package will be discussed in next chapter.

Resampling

As more objects (larger voxel data) is being exported, logically size
of output file increases. It is desirable to be able to reduce file size, so
that further image processing, such as importing to other programs,
rendering images can be done more efficiently, while still producing
similar quality of visual output.

This is accomplished by resampling the exported mesh, which
means that number of vertices in the mesh is reduced. A script
from iso2mesh

13 package was adapted and included within the 13 More information about the package:
http://iso2mesh.sourceforge.net/.ExportVoxelData package.

Resampling can be varied as illustrated by following code:

1 %% Mesh Modification − Resampling − Example 9
2

3 ExportVoxelData(BW_I, 'resample', 0.2);

The option_value is a number between 0 to 1, which defines frac-
tion of vertices remaining in the resampled mesh. To large extent pro-
cess of finding appropriate resampling value is based on an educated
guess. One has to export data with various values of resampling pa-
rameter and decide at which stage visual information is being lost at
a cost of reducing output file size.

Figure 11: Resampled image with 0.2
original number of vertices remaining.

In this example, exported mesh (Figure 11) contains only 0.2 of
original number of vertices, file size is reduced also approximately 5

times and it is a matter of opinion if image visually looks similar to
the original mesh - Figure 4.

By default no mesh resampling is done, i.e. option_value of
resample is set as 1.

http://iso2mesh.sourceforge.net/

14

Smoothing

Voxel data (by definition) is stored in discrete elements. This results
in a voxelised mesh having a discrete - "lego" like - texture. To obtain
a smooth looking surface, a smoothing package by Kroon. D.14 was 14 More information about the pack-

age: http://www.mathworks.com/
matlabcentral/fileexchange/26710-

smooth-triangulated-mesh.

adapted. Main part of the smoothing is implemented in C, which is
compiled on first package execution on a given workstation.

Consider first an example code:

1 %% Mesh Modification − Smoothing − Example 10
2

3 ExportVoxelData(BW_I, 'smoothing', false);

This produces output that can be seen in figure 12. option_value
in this case is set as false, which implies no smoothing. A scalar
value of 0 could be inputed to produce similar result.

Figure 12: No mesh smoothing.

The smoothing script has itself five parameters that specify how
the smoothing is performed. They can be inputed like:

1 %% Mesh Modification − Smoothing − Example 11
2

3 ExportVoxelData(BW_I, 'smoothing', struct('mode',1, ...
'itt',10, 'lambda',1, 'sigma',1));

This example code produces an exported object (shown in figure
13) for which smoothing procedure was executed 10 times.

Figure 13: Mesh smoothing with 10

iterations. Virtually no texture due to
discrete voxel data nature remains.

All options are described in detail in N_SmoothMesh.m file, but an
extract of the file is shown below (similar output can be obtained via
help N_SmoothMesh command):

1 % mode : value 0 or 1 (default)
2 % If zero uses inverse distance between vertices ...

as weights. The
3 % mesh becomes smoother but also edge distances ...

more uniform
4 % If one uses the normalized curvature operator ...

as weights. The
5 % mesh is mainly smoothed in the normal ...

direction, thus the
6 % original ratio in length between edges is ...

preserved.
7 % itt : Number of smoothing itterations (default 1)
8 % lambda : Amount of smoothing [0....1] (default 1)
9 % sigma : (If mode is 0), Influence of neighbour point is

10 % Weight = 1 / (inverse distance + sigma) ...
(default sigma=1);

By default following structure is used as configuration of the
smoothing script:

struct('mode',1,'itt',1,'lambda',1,'sigma',1)

http://www.mathworks.com/matlabcentral/fileexchange/26710-smooth-triangulated-mesh
http://www.mathworks.com/matlabcentral/fileexchange/26710-smooth-triangulated-mesh
http://www.mathworks.com/matlabcentral/fileexchange/26710-smooth-triangulated-mesh

Options

The two options described in previous chapter performed modifi-
cation of the extracted mesh that produced visual changes. Features
described in this chapter affect output location, mesh name, objects
exported or coordinate system used by the mesh. They were intro-
duced so that more efficient usage of the ExportVoxelData can be
achieved.

pov and stl - output specific file format

In some cases it might be desirable to export voxel data only in one
output file format. For example to export only STL file one has to set
pov flag as false or 0.

1 %% Output − STL only − Example 12
2

3 ExportVoxelData(BW_I, 'pov', false);

In a similar fashion to export only PovRay file one has to set stl
flag as false or 0.

By default both file formats are exported.

mesh_name - change mesh name

In order to change name of exported mesh and, what comes along,
also names of exported files, one has to set mesh_name flag with a
string specifying new mesh name. This is shown in listing below:

1 %% Options − mesh_name − Example 13
2

3 ExportVoxelData(BW_I, 'mesh_name', 'new_mesh_name');

By default "matlab_mesh" is used as option_value of mesh_name.

16

output_dir - change output folder

To change export directory to a given folder, it is necessary to set
option_value of output_dir option. For example, in the following
code, output is saved in a folder "my_output_folder":

1 %% Options − output_dir − Example 14
2

3 ExportVoxelData(BW_I, 'output_dir', 'my_output_folder');

option_value can be either a relative or absolute path to a folder.
In case if the folder does not exist it will be created.

By default all output is saved in directory of code execution, i.e.
option_value is an empty string.

label_matrix - input label matrix

If during data analysis label matrix was created alongside of correctly
structured voxel list, both can be entered to the package to reduce
amount of calculations performed. Code below shows structure of
the command:

1 %% Options − label_matrix − Example 15
2

3 ExportVoxelData(RP_I, 'label_matrix', LM_I);

Visually no different outcome to the one shown in "Input" chapter
is obtained, but amount of computations required is reduced.

By default, if option label_matrix is empty and label matrix is
required for a chosen mesh extraction method (that is both isosur-
face and geometric methods require label matrix), label matrix
will be created from entered input data, unless the input data already
is a label matrix.

object_ids - export only chosen objects

To export only some of objects contained in the voxel data, their ids
- integer numbers representing either regions objects occupy in label
matrix or entries in region properties (voxel list) structure can be
entered.

Consider code below:

Figure 14: Only specified object is
exported. Note: Shape of the object is due
to creation of the label matrix.

1 %% Options − object_ids − Example 16
2

3 ExportVoxelData(LM_I, 'object_ids', 1);

17

Only the sphere corresponding to the first region is exported as
shown in figure 14.

By default all objects are exported from the entered input data.

shift_origin - translate object’s coordinate system

Matlab’s coordinate system starts at (1, 1, 1) as it is linked to the
matrix format. This results in the centre of the exported voxel data
being at geometric centre of the matrix, i.e. if matrix has dimensions
(A, B, C) the geometric centre is at (A

2 , B
2 , C

2). Most of 3D visualisation
software, for example Blender or PovRay, prefer to have centre of
the image at (0, 0, 0), which makes rotations or other mesh operations
easier to implement.

To accomplish this, an option shift_origin was added to the
ExportVoxelData package. Consider first output with no origin
shift, i.e. essentially just as Example 1, but to make it explicit:

1 %% Options − shift_origin − Example 17
2

3 ExportVoxelData(BW_I, 'shift_origin', 0);

Figure 15: Coordinates of vertices with
no origin shift.

Shifting origin produces no difference in terms of object shape.
Let’s look at coordinates of vertices of the mesh as given in PovRay

matlab_mesh.inc file. Part of the file is shown in figure 15.
Now if origin shift is performed:

1 %% Options − shift_origin − Example 18
2

3 ExportVoxelData(BW_I, 'shift_origin', 1);

Figure 16: Coordinates of vertices with
estimated value of origin shift.

In this case, as can be seen in figure 16, some of coordinates be-
come negative, which corresponds to the fact that now geometric
center is approximately coincident with (0, 0, 0) in Cartesian coordi-
nate system.

By default no origin shift is performed, that is shift_origin is
set as 0. It is worth pointing out that this flag accepts only 0 or 1 as
input, due to internal code structure imposed by another option of
the package - img_dim.

img_dim - provide dimensions of exported object

Estimate of the geometric centre, which is necessary to perform ori-
gin shift, is done from list of voxels occupied by all particles being
exported. This estimate can differ in value from the true input matrix
dimensions, hence image dimensions can be entered manually as

18

given in following listing:

1 %% Options − img_dim − Example 19
2

3 ExportVoxelData(BW_I, 'img_dim', size(BW_I))

Figure 17: Coordinates of vertices with
true value of origin shift.

Resulting coordinates of the same vertices as in previous section
are presented in figure 17. As it can be seen the difference between
these values and those from figure 16 is significant. This can be the
case if exported voxel data is mostly empty.

Also inputing just option_value for img_dim is treated as inform-
ing the package that origin shift is to be performed, i.e. it is not nec-
essary to set shift_origin to 1.

Image dimensions are not only used for determination of true
origin shift. They can also be used to speed up the process of label
matrix creation. If one wanted to speed up process of label matrix
creation, but not to shift origin of the image, setting shift_origin

to 0 accomplishes that. This is also the reason why option_value of
shift_origin cannot be a logical type as information whether origin
shift to be performed is a default setting or user input has to be kept.

img_shift - translate object’s mesh by a given vector

In some cases it might be desirable to shift origin of the mesh by
some specified displacement vector. Consider following command:

1 %% Options − img_shift − Example 20
2

3 ExportVoxelData(BW_I, 'img_shift', [100, 0, 0]);

Figure 18: Shift of origin by a given
displacement vector.

Figure 18 shows that the x coordinate was shifted by 100 units in
positive direction, while y and z coordinates remain unchanged. This
corresponds to the entered (100, 0, 0) value of displacement vector as
the option_value.

By default the displacement vector is set as (0, 0, 0), which corre-
sponds to no additional origin shift.

Exporting voxel data to PovRay

Structure of PovRay .inc files

Outputted files, to maintain generality, contain just description of
mesh structure of the voxel data. Every exported object is labelled in
the .inc file using following pattern: mesh_name’_’object_id. For
example if mesh_name is my_mesh and there are two objects exported,
then the first object will have name of its mesh given as my_mesh_1

and the second object will have name my_mesh_2. In addition all
exported objects can be referred to as a whole using mesh_name_all,
i.e. my_mesh_all in this case.

Creating PovRay scene

ExportVoxelData package contains support for a simple PovRay

scene creation, which can be rendered out of the box and shows
exported objects together with some colour, texture and transparency
setting.

Consider exporting first the BW_NI data and colouring all objects in
yellow, completely opaque and with no texture. This is accomplished
by code in Example 21 in Manual_Examples.m file shown below:

1 %% Exporting Voxel Data to PovRay − No colouring − ...
Example 21

2

3 % Export only PovRay files
4 ExportVoxelData(BW_NI, 'stl', false);
5

6 % Define parmeters of the export
7 scene_name = 'matlab_scene'; % Name of created file
8 mesh_name = 'matlab_mesh'; % Name of the .inc file
9 dim = size(BW_NI); % Dimensions of the image

10

11 % Create a cell array of strings with names of other .inc ...
files, such as texture

12 % files etc, to be included as well apart of the mesh ...
description .inc file

20

13 include_files = {'colors'};
14

15 % Create mesh_list of objects to export
16 mesh_list.name = [mesh_name '_all']; % Union of all ...

exported objects is always accesible with
17 % mesh_name_all
18 mesh_list.texture = ''; % No texture
19 mesh_list.rgb = [1, 1, 0]; % Set as yellow
20 mesh_list.transmit = 0;
21

22 % Add file with object meshes to the list
23 include_files = [include_files mesh_name];
24

25 % Create PovRay scene configuration
26 pov_configuration.scene_name = scene_name;
27 pov_configuration.include_files = include_files;
28 pov_configuration.camera_location = [round(dim(2)/2), ...

round(dim(1)/2), −(dim(3)+200)]; % Camera location
29 pov_configuration.camera_look_at = [round(dim(2)/2), ...

round(dim(1)/2), round(dim(3)/2)]; % Camera look at
30

31 clear mesh_name scene_name include_files
32

33 % Add PovRay ligth sources
34

35 % Preallocate
36 pov_configuration.light_source = zeros(4,3); % Four light ...

sources
37

38 % Add light sources
39 pov_configuration.light_source(1,:) = [dim(2)+20, ...

dim(1)+20, dim(3)+20];
40 pov_configuration.light_source(2,:) = [1, dim(1)+20, ...

dim(3)+20];
41 pov_configuration.light_source(3,:) = [dim(2)+20, 1, ...

dim(3)+20];
42 pov_configuration.light_source(4,:) = [dim(2)+20, ...

dim(1)+20, 1];
43

44 clear dim
45

46 % Create PovRay Scene
47 N_PovCreateScene(pov_configuration, mesh_list);
48

49 clear pov_configuration mesh_list

Line 4 indicates exporting only PovRay data, similarly to export-
ing just STL file in Example 12.

Lines 6 to 9 specify parameters for the export. scene_name just sets
name for exported .pov file, mesh_name informs the script under what
name was the voxel data exported as it corresponds to the .inc file
to be included. Note that this does not support exporting voxel data
to other directory as provided by output_dir option (unless one sets
PovRay to search that directory for .inc files). dim is just a handy
short-cut for vector defining dimensions of exported data.

Line 13 can be used to specify what other files are to be included.
In this case it includes description of colours, by default provided

21

with every PovRay provided distribution.
Line 15 creates the mesh_list structure. First field is name, which

specifies the name of the mesh to be rendered. In this case it will ren-
der all exported objects as provided by the reference matlab_mesh_all.

Line 18 sets texture field of the exported mesh. In this case no
texture is used, hence it is left as empty.

Line 19 sets RGB colour15 of the object. In this case colour of ex-

15 More information about specifying
colours, transmittance and texture in
PovRay available at: http://www.
povray.org/documentation/view/3.7.

0/230/.ported mesh is set as yellow.
Line 20 defines transmit field of the mesh, which informs PovRay

about transparency of the object.

Figure 19: Exported PovRay file. Note:
All exported objects are referred to with one
declaration.

Line 23 appends name of the mesh file to the list of include files.
This could be changed if mesh is present in alternative directory as
specified by output_dir option of the ExportVoxelData script.
Please note that all names of libraries to include do not have exten-
sion. It is assumed by the script that default extension .inc is used.

Lines 25 to 27 create a structure with configuration of PovRay

scene just for easier argument passing. This includes the scene name
and what files to include.

Lines 28 and 29 append to the structure specification of PovRay

camera16 for this scene, which attempts to center on exported objects 16 More information about PovRay

camera available at: http://www.
povray.org/documentation/view/3.7.

0/245/.

in the rendered PovRay scene.
Lines 35 to 42 add information about lightning to the configura-

tion structure. In this case four light sources are added, which are
aimed to be located at edges of exported voxel data. Light sources
added to PovRay scene are point-like17 and they emit white light.

17 More information about PovRay

light sources available at: http://www.
povray.org/documentation/view/3.6.

1/308/.

Figure 20: Rendered scene

Finally line 47 creates the PovRay scene file (.pov) specified by
scene configuration structure pov_configuration with objects to
include described in mesh_list.

Exported scene is located in directory of the code execution. Ex-
ported .pov file is shown in figure 19 and rendered scene is in figure
20.

Similarly to all other files included in the ExportVoxelData

package, N_PovCreateScene function contains an associated help file,
which can be accessed using help N_PovCreateScene command in
Matlab.

Colouring objects using a scalar array as a key

In most cases it will be desirable to colour exported objects by
some property. It can be some physical quantity such as packing
fraction, number of contacts or any other scalar array, which can be
put into an ordered sequence. The package contains support for that
and it is illustrated with Example 22 in the Manual_Examples.

http://www.povray.org/documentation/view/3.7.0/230/
http://www.povray.org/documentation/view/3.7.0/230/
http://www.povray.org/documentation/view/3.7.0/230/
http://www.povray.org/documentation/view/3.7.0/245/
http://www.povray.org/documentation/view/3.7.0/245/
http://www.povray.org/documentation/view/3.7.0/245/
http://www.povray.org/documentation/view/3.6.1/308/
http://www.povray.org/documentation/view/3.6.1/308/
http://www.povray.org/documentation/view/3.6.1/308/

22

Code from Example 21 performing PovRay scene creation is
largely unchanged with exception of lines 15 to 20, which are ex-
changed to:

Figure 21: Exported PovRay file with
colouring of objects. Note: Objects are
being referred to using their individual ids.

1 % Property used for coloring
2 color_criteria = [1, 2]; % Just two different colours
3

4 % Create mesh_list of objects to export with coloring as ...
a function of a given parameter

5

6 % Parameters of the mesh_list
7 transmit = 0; % Scalar affecting transparency (0 ...

opaque, 1 transparent)
8 texture_name = ''; % No texture is being used
9 number_of_bins = 2; % Number of bins used for grouping ...

of colour_criteria, in this case it is superficial
10 color_compression = 0; % compression of color histogram ...

(0 no, 1 maximal(binary))
11

12 % Obtain a structure with color and transparency ...
properties of exporte objects

13 mesh_list = N_PovCreateMeshList(mesh_name, ...
color_criteria, color_compression, number_of_bins, ...
transmit, texture_name);

Figure 22: Exported objects are
coloured with consecutive integers
used as a key. Colormap decreases in
colour warmth with increasing key, i.e.
red corresponds to lower values.

Line 2 specifies the array with scalar values used for ordering. In this
example property used for colouring is just the object identifier.

Lines 6 to 10 define properties of colouring process and exported
mesh as indicated by comments included in the code. In this example
number_of_bins value of 2 is superficial as only two objects exist.
color_compression permits exclusion of outliers in the key used for
ordering.

Line 13 is execution of a function, which performs creation of the
mesh_list in the same format as in Example 21. Created scene is
shown in figure 21 and rendered image is in figure 22.

Script uses jet18 colormap included by default in Matlab, to 18 More information about Matlab’s
colormaps available at: http://www.
mathworks.com/help/matlab/ref/

colormap.html.

generate RGB values. Similarly to N_PovCreateScene, N_PovCreateMeshList
also includes documentation, which in depth describes the mesh_list

structure. This help file is accessible with help N_PovCreateMeshList

command in Matlab.

http://www.mathworks.com/help/matlab/ref/colormap.html
http://www.mathworks.com/help/matlab/ref/colormap.html
http://www.mathworks.com/help/matlab/ref/colormap.html

Exporting voxel data to Blender

Format of STL files

A detailed description of STL file format is accessible online19 19 More information is available at:
http://www.ennex.com/~fabbers/StL.

asp.
and exported STL files follow it. Script responsible for exporting
of the STL files, N_StlAddMesh, supports both binary and ascii file
structure. In order to reduce size of exported STL files, binary for-
mat is used in the package, but if necessary it can be changed in
N_3DAddVoxelData.m file.

It is important to point out a key difference between exported
mesh in PovRay and STL format. While PovRay file structure per-
mits export of distinct objects to a single .inc file, which can then
be referred to individually, STL format allows only to refer to all
exported objects as a whole, i.e. it treats them as a single object. An
example, where referring to individual objects in Blender is pos-
sible will be given in "Exporting voxel data as individual coloured
objects" section, but essentially it requires creation of a separate STL
file for each exported object.

Exporting voxel data as a single object

In essence this is already performed by ExportVoxelData pack-
age, without any additional coding, as the exported STL file can be
readily imported to any 3D visualisation software. For the purpose
of this manual Blender will be used due to its open-source nature,
ease of implementing add-ons and large online community.

Consider Example 23 in the Manual_Examples.m file. A simple STL
export is given by following code:

1 %% Exporting Voxel Data to Blender − No colouring − ...
Example 23

2

3 ExportVoxelData(BW_NI, 'pov', false, 'img_dim', size(BW_NI));

http://www.ennex.com/~fabbers/StL.asp
http://www.ennex.com/~fabbers/StL.asp

24

Note that img_dim option is used to make geometric centre of the
exported image coincide with global coordinate system origin (0, 0, 0)
in Blender. It is not strictly necessary as imported object can be
shifted in Blender.

Figure 23: Rendered scene just after
importing the STL file and removing
the default "Cube" object included in
every new Blender scene.

Resulting STL file can be imported to Blender using provided
File → Import → Stl (.stl) function. Imported object is usually
too big by default and has to be rescaled20. This is because exported

20 Most easily achieved by hitting "S"
key and typing 0.02 just after import is
finished

STL file describes the mesh in Matlab units, whereas the default
Blender unit is smaller. Alternatively camera can be zoomed out.
Such plain scene can be rendered and is shown in figure 23.

Following the import further modelling, shading etc. can be per-
formed.

Exporting voxel data as individual coloured objects

Method presented in previous section although simple and straight-
forward to be done, might not be the most useful way of exporting
voxel data in most cases. This is because exported objects cannot be
separated in Blender and also it is desirable to output, alongside of
object shape, information about its colour or transparency that can be
used to represent some physical property.

To accommodate these conditions further features were added to
the ExportVoxelData package and an add-on to Blender was
written. It permits batch import of STL files and sets their diffuse
colour and transparency21 as specified in a configuration file. 21 More information about Blender

material properties available at: http:
//en.wikibooks.org/wiki/Blender_

3D:_Noob_to_Pro/Materials_and_

Textures.

An Example 24 in Manual_Examples.m illustrates those features. Its
code listing is included below:

1 %% Exporting Voxel Data to Blender − Separate files with ...
coloring − Example 24

2

3 % Export voxel data as separate .stl files only
4 for i = 1 : 2 % Loop over both objects
5 ExportVoxelData(LM_I,...
6 'mesh_name',strcat('Blender_', ...

num2str(i)),...
7 'pov',false,...
8 'object_ids', i,...
9 'img_dim',size(LM_I));

10 end
11

12 clear i
13

14 % Define parmeters of the export
15 file_name = 'matlab_export';
16 mesh_name = 'Blender'; % Note lack of _
17 dim = size(LM_I);
18

http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Materials_and_Textures
http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Materials_and_Textures
http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Materials_and_Textures
http://en.wikibooks.org/wiki/Blender_3D:_Noob_to_Pro/Materials_and_Textures

25

19 % Property used for coloring
20 color_criteria = [1, 2];
21

22 % Create mesh_list of objects to export with coloring as ...
a function of a given parameter

23 % Parameters of the mesh_list
24 alpha = 0.4; % Transparency affecting factor
25 number_of_bins = 2; % Number of bins used for grouping ...

of colour_criteria
26 color_compression = 0; % compression of color histogram ...

(0 no, 1 maximal(binary))
27 mesh_list = N_StlCreateMeshList(mesh_name, ...

color_criteria, color_compression, number_of_bins, ...
alpha);

28

29 clear color_criteria alpha number_of_bins ...
color_compression mesh_name

30

31 % Scaling Settings (Empirical Value)
32 blender_max_coord = 3; % Assuming equal aspect ratio
33 scaling_factor = repmat(blender_max_coord / (dim(1)/2), ...

1, 3); % Assume equal scaling
34

35 clear blender_max_coord dim
36

37 % Create the blender_configuration structure
38 blender_configuration.file_name = file_name;
39 blender_configuration.scaling_factor = scaling_factor;
40

41 clear file_name scaling_factor
42

43 % Export the properties file
44 N_StlExportToBlender(blender_configuration, mesh_list);
45

46 clear blender_configuration mesh_list

Let’s discuss the code in pieces. Lines 4 to 10 correspond to ex-
porting every object from the voxel data file into a separate STL file.
As far as I am aware, this is the easiest solution to the mentioned lim-
itation of STL file format. It is worth pointing out that if larger num-
ber of STL files is being exported, to avoid cluttering of the package
execution directory, output_dir option could be used. Also please
note how file name is being generated sequentially. In principle this
could be implemented within the ExportVoxelData.m function, but
it would require significantly more code lines as compared to the
simple for loop.

Lines 14 to 30 are very similar to the PovRay Example 22. The
only different is in nomenclature. transmit is exchanged with alpha,
but they both are responsible for the same property, i.e. object’s
transparency in the rendered image.

Lines 31 to 33 determine in a simple way (nearly empirical) scaling
of exported objects, so that they will fit Blender’s default render
region.

Lines 38 and 39 create a blender_configuration structure analo-

26

gous in its role to the pov_configuration structure from Example 21

and Example 22.
Finally line 44 creates the .txt Blender configuration file, which

can be used with the provided add-on to import exported objects into
Blender.

Process of using the batch import STL add-on is identical to using
the default import STL function in Blender. Following one-time
installation of the add-on22, just use the option menu entry located

22 More information on installing
Blender add-ons available at: http:
//wiki.blender.org/index.php/Doc:2.

6/Manual/Extensions/Python/Add-Ons.in Blender at File → Import → Batch import STL (.txt) and
select, in the dialog window that opens, the configuration file. It is
necessary to ensure that the configuration file is located in the same
directory as exported STL files. After clicking the "Batch import

STL" button, importing process will start and, depending on num-
ber and size of exported STL files, it might take a while until the
Blender 3D view will appear with imported STL files listed in the
Outliner window. Following successful import, the scene can be ren-
dered to produce results shown in figure 24.

Figure 24: In the rendered scene objects
are coloured and partially transparent
as specified in the configuration file.

Structure of the configuration file is described in depth in the
N_StlExportToBlender function and, as usual, is accessible using
help N_StlExportToBlender command.

Rendering stereoscopic images

Voxel Data, STL files and Blender scenes all contain 3D infor-
mation, i.e. objects are represented as three-dimensional structures.
When an image or animation is rendered all that information is being
lost and two-dimensional structures are being outputted. In principle
some of this information can be preserved if stereoscopic output is
being used.

Blender, being an open-source program with extensive online
community, allows to make the process of rendering stereoscopic
images relatively straightforward. A stereoscopic camera add-on
written by Schneider S.23 permits an easy creation of such images. 23 More information about the pack-

age:http://www.noeol.de/s3d/.For convenience it is included in the Blender Addons folder together
with the batch import STL add-on.

Following section tries to give a short example of the add-on us-
age. For more detailed examples please refer to the add-on author’s
website.

Let’s try to output stereoscopic images using the Blender scene
created in Example 24. If the stereoscopic camera add-on was cor-
rectly installed, it should have added its interface to the Camera panel
in the Properties window of camera objects. By following steps
showed in author’s Youtube video24 and applying them to the cam-

24 Video at a time of writing this manual
is available at: http://www.youtube.
com/watch?v=usWXat4pt1M.

http://wiki.blender.org/index.php/Doc:2.6/Manual/Extensions/Python/Add-Ons
http://wiki.blender.org/index.php/Doc:2.6/Manual/Extensions/Python/Add-Ons
http://wiki.blender.org/index.php/Doc:2.6/Manual/Extensions/Python/Add-Ons
http://www.noeol.de/s3d/
http://www.youtube.com/watch?v=usWXat4pt1M
http://www.youtube.com/watch?v=usWXat4pt1M

27

era in our scene, it is straightforward to obtain a stereoscopic effect.
Rendered stereoscopic images are not included in the manual file as
the 3D effect would not be visible on a standard display. Instead a
screenshot of Blender workspace used to render them is shown in
figure 25.

Figure 25: Blender workspace with
objects imported using the batch import
STL add-on and stereoscopic camera
add-on active. Note: Grey planes are
added by the stereoscopic camera package
and help to adjust stereoscopic cameras for
the best 3D effect.

The add-on allows to vary several parameters of its setup (for ex-
ample location of plane of zero-parallax, camera separation or even
number of pixels per inch on the final display) and those parame-
ters should be changed in order to produce the best possible visual
effect. Furthermore the stereoscopic add-on allows to export images
in several formats such as: side by side, above under or red cyan
analglyph.

Further examples

Those two objects used in this manual might not be typical voxel
data one wants to export mesh of. For this reason there are also two
additional example scripts, Example_ExportVoronoiCellsPovRay.m
and Example_ExportVoronoiCellsBlender.m. In order to be able
to run those two scripts, a .mat file with spaghetti data has to be
downloaded25. This is because both examples use real voxel data of

25 For the time being, file is ac-
cessible at my Google Drive:
https://docs.google.com/file/d/

0BybuboAGRbuvRzFPa3FzTEdiYzQ/edit?

usp=sharing.a spaghetti packing and it would be inconvenient to include a large
data file (310 MB) by default with the ExportVoxelData package.

Figure 26: A 2D frame from a sam-
ple 3D animation available at:
https://docs.google.com/file/d/

0BybuboAGRbuvcEgtUzI2bmVIRUk/edit?

usp=sharing.

Examples were written as extensions of Example 22 and Example
24. They are aimed to illustrate features of the ExportVoxelData

package. In both examples it is shown how to combine mesh_list for
objects that are being colour coded (voronoi cells in this case) with
objects of the same colour (spaghetti particles).

https://docs.google.com/file/d/0BybuboAGRbuvRzFPa3FzTEdiYzQ/edit?usp=sharing
https://docs.google.com/file/d/0BybuboAGRbuvRzFPa3FzTEdiYzQ/edit?usp=sharing
https://docs.google.com/file/d/0BybuboAGRbuvRzFPa3FzTEdiYzQ/edit?usp=sharing
https://docs.google.com/file/d/0BybuboAGRbuvcEgtUzI2bmVIRUk/edit?usp=sharing
https://docs.google.com/file/d/0BybuboAGRbuvcEgtUzI2bmVIRUk/edit?usp=sharing
https://docs.google.com/file/d/0BybuboAGRbuvcEgtUzI2bmVIRUk/edit?usp=sharing

30

Furthermore there also is a Blender file available online26. It was 26 Again for the time being avail-
able at my Google Drive: https:
//docs.google.com/file/d/

0BybuboAGRbuvVVBHV1FhZ2kyYzQ/

edit?usp=sharing.

created from output of Example_ExportVoronoiCellsBlender.m and
it renders a working stereoscopic animation using the described add-
on by Schneider S. in "Rendering stereoscopic images" section. It is
optimised for a 3DTV setup, hence it might require some adjustments
to reproduce similar effect on other equipment. A simple 2D render
of its content is shown in figure 26.

https://docs.google.com/file/d/0BybuboAGRbuvVVBHV1FhZ2kyYzQ/edit?usp=sharing
https://docs.google.com/file/d/0BybuboAGRbuvVVBHV1FhZ2kyYzQ/edit?usp=sharing
https://docs.google.com/file/d/0BybuboAGRbuvVVBHV1FhZ2kyYzQ/edit?usp=sharing
https://docs.google.com/file/d/0BybuboAGRbuvVVBHV1FhZ2kyYzQ/edit?usp=sharing

Conclusion

Thank you for reading this manual until the very end. I hope it was
useful and that I managed to explain some of the features that the
ExportVoxelData package provides.

This package was my first computing project of this size, hence I
wanted to apologise in advance for any errors that might be present
in the code or the manual itself. I would appreciate any suggestions,
comments or possible further package improvements. Finally if any-
thing is unclear or further clarification is required, please e-mail me27 27 My e-mail address: cyprian.

lewandowski@gmail.com .and I will do my best to provide an answer.

mailto:cyprian.lewandowski@gmail.com
mailto:cyprian.lewandowski@gmail.com

	Introduction
	How does the package work?
	Manual layout

	Input
	Logical
	Label matrix
	Voxel list

	Mesh Extraction
	Convex hull method
	Isosurface method
	Geometric method

	Mesh Modification
	Resampling
	Smoothing

	Options
	pov and stl - output specific file format
	mesh_name - change mesh name
	output_dir - change output folder
	label_matrix - input label matrix
	object_ids - export only chosen objects
	shift_origin - translate object's coordinate system
	img_dim - provide dimensions of exported object
	img_shift - translate object's mesh by a given vector

	Exporting voxel data to PovRay
	Structure of PovRay.inc files
	Creating PovRay scene
	Colouring objects using a scalar array as a key

	Exporting voxel data to Blender
	Format of STL files
	Exporting voxel data as a single object
	Exporting voxel data as individual coloured objects
	Rendering stereoscopic images

	Further examples
	Conclusion

